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Charge ordering and magnetism in quarter-filled Hubbard-Holstein model
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We study a two-dimensional Hubbard-Holstein model with phonons treated in the adiabatic limit. A Hartree-
Fock decomposition is employed for the Hubbard term. A range of electronic densities are discussed with
special emphasis on the quarter filling (n=0.5). We argue that the quarter-filled system is relevant for the
electronic properties observed at the interface between LaAlO; and SrTiO;, where half-electron per unit cell is
transferred to the TiO, layer as a consequence of the polar discontinuity at the interface. In addition to
presenting the overall phase diagrams, we identify an interesting charge-ordered antiferromagnetic phase for
n=0.5, which was also reported recently in the ab initio study of the LaAlO3-SrTiO5 interface.
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I. INTRODUCTION

The interfaces between bulk insulating oxides such as
LaAlO; (LAO) and SrTiO; (STO) have recently become a
topic of very active research.'”> The interest in such inter-
faces was triggered by the observation of unusually high in-
plane conductivity at the TiO,-terminated interface.” Materi-
als with such high mobilities can find numerous applications
in various fields of industry and can also be utilized to make
new devices.>* The origin of this effect is believed to be an
electronic reconstruction caused by the polar discontinuity at
the interface.® The conceptual idea is that in order to avoid a
divergence of electrostatic potential, 0.5 electrons/unit cell
are transferred to the TiO, layer. These electrons then behave
as a quasi-two-dimensional (2D) electron gas leading to large
mobilities.

Subsequently, experiments were carried out at variable
oxygen pressure and a strong dependence in the transport
measurements was reported.” In the presence of high-oxygen
pressure, an insulating behavior in the resistivity was ob-
served at low temperatures. This indicates that perhaps oxy-
gen vacancies play a crucial role in the existence of high-
interfacial conductivity and the system may actually be
insulating in the absence of oxygen vacancies. In addition, an
external magnetic field has a strong effect on transport.” Ap-
plying magnetic field leads to a gain in the conductivity at
low temperatures. An explanation for the insulating behavior
of the resistivity was suggested to be connected to the mag-
netism and perhaps to the Kondo effect.

While the concept of electronic charge reconstruction or
oxygen vacancies can provide a reasonable explanation for
the observed conductivity, there is no rigorous understanding
for the origin of magnetism at the interface. Hence, the un-
derstanding of magnetotransport is also rather incomplete.
The present theoretical understanding of the interface prop-
erties has been largely based on the density-functional theory
(DFT) calculations. Existence of a charge-ordered state has
been predicted by these calculations.® At the level of a mini-
mal model, a charge-ordered state can be obtained within the
extended Hubbard model.® But, such a state should be non-
magnetic, suggesting that there might be an alternate mecha-
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nism active in these systems which leads to the charge or-
dering. Recent LDA+U (LDA is local-density
approximation) studies of the LAO/STO interface have
shown that structural distortions are present in the vicinity of
the interface indicating the presence of an electron-lattice
coupling. In this study a charge-ordered antiferromagnetic
(AF) state was found to be the ground state.'”

In this paper we study the two-dimensional Hubbard-
Holstein model as a simplest model capturing the effects of
both electron-electron and electron-lattice interactions. We
find that the magnetic moments are formed as a consequence
of polaron formation. These magnetic moments are found to
be antiferromagnetically correlated at finite densities. At
quarter filling, the ground state is antiferromagnetic and
charge ordered in agreement with the findings of recent
LDA+U calculations.

II. MODEL AND METHOD

We consider a one-band Hubbard-Holstein model on a
square lattice with the Hamiltonian

H=—1t> (Cj-—gcjo.+ He)+ U, ngn;,
(ij))o i

Al + 53 n

Here, c;, and c], are the electron annihilation and creation
operators with electronic spin o=1,|. n;=n;+n; is the
charge-density operator at site i with nig=cjgcw. The average
electronic charge density is denoted by n and x; denotes the
volume contraction and expansion of the oxygen octahedra,
which couples to the variations in the charge density. The
hopping parameter ¢ is set to one, therefore all energy scales
are in units of ¢. U is the strength of on-site Hubbard repul-
sion and M\ is that of electron-lattice coupling. The lattice
stiffness constant K is set to one.

In the present study the lattice distortions x; are treated in
the adiabatic limit. In the absence of the Hubbard term, the
electronic Hamiltonian is bilinear in annihilation and cre-
ation operators, with the background potential provided by
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the configuration {x;} of lattice distortions. The ground state
therefore corresponds to the lattice configuration which mini-
mizes the total energy. In the absence of the kinetic-energy
term (¢=0), the problem reduces to N replicas of the one on
a single site, where N is the number of lattice sites. The total
energy for a single site is given by

E = - \x/({n;) — n) + Kx?/2. ()

Here and below (A) denotes the expectation value of the
operator A. Minimization of the energy E with respect to the
classical variable x; leads to x;=(\/K)({n;)—n). For finite ¢,
however, the kinetic-energy term also contributes to the total
energy,

E=-12 (¢} cjc+He) - )\Ex«n) n)+ Exzz

(ipo
(3)

Note that x; is not a specified potential but has to be deter-
mined self-consistently with the distribution of the electronic
charge density. We compute the self-consistent lattice poten-
tial in the following scheme: Start with an arbitrary configu-
ration of lattice distortions {x;}. Diagonalize the Hamiltonian
to generate the eigenvalues and eigenvectors. Compute the
electronic charge density (n;). Use the relation x;
=(N/K)({n;)—n) at each site to generate the new configura-
tion for {x;}. Repeat the process until the old and new charge
densities match within given error bar.

In order to include the Hubbard term into the above self-
consistent formalism, we treat the Hubbard term within
Hartree-Fock approximation. The Hartree-Fock decomposi-
tion of the Hubbard term leads to

Hy= UE (pngy + ng(ng ) = (g Xy ) (4)

Now the self-consistency cycle requires the convergence of
(n;;) and (n;)) individually. The generic problem with the
self-consistent methods is that they need not lead to the
minimum-energy solution. Therefore, we use a variety of
ordered and random initial states for the self-consistency
loop and select the converged solution with the lowest en-
ergy.

The Hubbard-Holstein model contains a variety of inter-
esting phases and phenomena including superconductivity,
charge- and spin-density wave formations, phase separation,
and polaron and bipolaron formations. For this reason, the
Hubbard-Holstein model has always been of interest in dif-
ferent contexts.!!~1® Most of the earlier studies on this model
were focused at or near half filling. The quarter-filled case
has not been analyzed in much detail except in one
dimension.!”

III. RESULTS
A. Dilute limit

We begin by analyzing the case with very few electrons.
Consider Hamiltonian (1) with a single electron. The Hub-
bard term is inactive and for small A the ground-state wave
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FIG. 1. (a) Phase diagram in the limit of low electron density in
the parameter space of electron-lattice coupling A and the Hubbard
repulsion U. Single polaronic and bipolaronic regimes are denoted
by SP and BP, respectively. The solid lines are from a strong-
trapping analysis (see text) and the symbols are the results of nu-
merical calculations. (b) Total energy as a function of the distance
between two single polarons. The circles (squares) are for the par-
allel (antiparallel) spins of the single polarons. Inset shows the ef-
fective magnetic coupling between two self-trapped electrons as a
function of the distance between them.

function corresponds to a Bloch wave. Since the lattice re-
mains undistorted, i.e., x;=0, the only contribution to the
total energy is from the kinetic energy. For a single electron
in a 2D square lattice, the lowest eigenvalue is —4¢, which is
also equal to the total kinetic energy. Upon increasing the
value of A\, the energy is gained via the Holstein coupling
term by self-trapping of the electron into a single polaron
(SP). In mean field the trapping occurs only when the energy
of the SP state is lower than —4¢. Within a simple analysis,
where we assume an ideal trapping of the electron at a single
site, Eq. (2) leads to Egp=—N2/K+\%/(2K)=-\?/(2K).
Hence, the critical value of N\ required for trapp1_g_a single
electron into a single polaron is given by )\ =V8Kt.

Now consider the case of two electrons. In addition to the
possibility of trapping the electrons as two single polarons, it
is also possible to find a bipolaron (BP) solution. In fact the
BP solution has a lower energy than two SPs and the critical
value of N required to form a BP is given by )\ =V4Kt. The
tendency to form bipolarons is clearly suppressed by the re-
pulsive energy cost of the Hubbard term. From a very simple
analysis of the two electron case one obtains Ep..~—8¢,

sp~—2N\2/K+U, and Eqp~—\?/K. Looking for various en-
ergy crossings as a function of A and U one obtains the phase
diagram shown in Fig. 1(a) for the three phases considered
above. The solid lines are from the simple analysis described
above and the symbols represent the boundary values from
the self-consistent numerical calculation. Note that this phase
diagram corresponds to the case of two electrons in an infi-
nite lattice and therefore refers to n— 0 in terms of fractional
electronic filling in the thermodynamic limit. The dilute limit
of the Holstein model has been extensively studied in the
context of polaron formation and self-trapping
transitions.'820 A variety of methods including weak- and
strong-coupling perturbation theories, dynamical mean-field
theory, and Monte Carlo simulations have been employed in
the previous studies. Most of these studies were not re-
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stricted to the adiabatic limit; therefore a direct comparison
of the present results is not possible. Nevertheless, we find
that some of the features are very well reproduced by the
present method, e.g., the self-trapping threshold )\LS.P~2.5
compares very well with the values reported in previous
studies. !0

Assuming that U is large so that we are in the regime of
single polaron formation, we estimate the effective interac-
tion between two single polarons by calculating the total
energy as a function of the distance between them. The en-
ergy difference between the spin-aligned and spin-
antialigned single polarons provides an estimate for effective
magnetic interaction between two polarons. The energy
variations are shown in Fig. 1(b), suggesting a repulsive and
antiferromagnetic interaction between the localized magnetic
moments. The energy difference AE=E;—E;, is plotted in
the inset in Fig. 1(b). Positive values of AE for all R show
that the two trapped moments prefer to be antiferromagnetic
for all distances. In fact, the strength of the interaction is
almost vanishingly small for R >2, suggesting the absence of
any ordered magnetic state for low densities. We will see in
Secs. III B and III C that the above analysis of the dilute
limit provides a very simple understanding of the phases that
occur at finite densities, in addition to clarifying the basic
competing tendencies present in the Hubbard-Holstein
model.

B. Generic electron densities

For analyzing the system at higher electron densities we
employ the self-consistent method described in Sec. IIT A.
For the converged solution with minimum energy, we com-
pute the charge structure factor,

D,(q) = N‘zz ((n) = n)((n;) = n)e™ v,
ij

and the spin structure factor,
D(q)=N72 <Si><5j>3_iq'(r’_rf),
i

with s;=(n;—n;))/2. Various ordered phases are inferred
from the peaks in these structure factors. Figure 2(a) shows
the spin structure factor at q=(1r, 77), which is a measure of
antiferromagnetic correlations, and at q=(0,0), which is in-
dicative of a ferromagnetic behavior. At A=0 the system is
antiferromagnetic (AFM) at and near n=1, it becomes ferro-
magnetic (FM) for 0.7<n<0.9, and eventually becomes
paramagnetic (PM). The antiferromagnetism at half filling
arises as a consequence of the nesting feature of the Fermi
surface. The ferromagnetism at intermediate densities can be
understood within a Stoner picture which suggests that the
repulsive cost coming from the Hubbard term can be reduced
by a relative shift of the spin-up and spin-down bands. At
A=2, the antiferromagnetic regime near n=1 broadens [see
Fig. 2(b)]. The ferromagnetism is absent. Near n=0.5 we
find peaks in the charge structure factor at (7r,r), which
indicates a charge-ordered (CO) state. Simultaneous peaks
are found in the spin structure factors at (0,7) and (,0)
pointing toward the existence of a nontrivial state with si-
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FIG. 2. (Color online) The charge and spin structure factors at
various q as a function of average charge density n at U=6 for (a)
A=0 and (b) A=2. The total density of states for selected n are
shown for (¢) A=0 and (d) A=2. The dotted (blue) curves in (c) and
(d) are shifted along the y axis for clarity.

multaneous existence of charge and spin ordering. All the
results presented in this paper are for N=322; the stability of
these results has been checked for system sizes up to N
=407,

To further analyze the nature of electronic states we com-
pute the density of states (DOS) as

N(w) =N_]2 Nw-¢) %N_IE. %

Here, ¢ denote the eigenenergies corresponding to the
minimum-energy configuration. The & function is approxi-
mated by a Lorentzian with width y. We use y=0.04 in the
calculations. A clean gap in the DOS is observed only for
n=1 in the absence of \ [see Fig. 2(c)]. In the FM regime, a
two-peak structure represents a shifted spin-up and spin-
down band, which is consistent with the Stoner picture of
magnetism in Hubbard model. Eventually at low density the
DOS begins to resemble the free-electron tight-binding DOS.
More interesting features are observed in the DOS at A\=2
shown in Fig. 2(d). The clean gap originating from the AFM
state survives down to n ~0.85. The gap opens up once again
at quarter filling (n=0.5). This correlates perfectly with the
signatures found in the structure factor calculations shown in
Fig. 2(b).

The results for various U at A=0 and A=2 are summa-
rized into two phase diagrams. The U-n phase diagram for
A=0 is shown in Fig. 3(a). Antiferromagnetic, ferromagnetic,
and paramagnetic states are found to be stable in agreement
with previous results on the Hubbard model in two
dimensions.?!~?3 Figure 3(b) shows the U-n phase diagram
for N=2. For low U, the system becomes a bipolaronic insu-
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FIG. 3. (Color online) The U-n phase diagrams for the Hubbard-
Holstein model for (a) A=0 and (b) A=2. FM, AF, and PM phases
are present in case of the pure Hubbard model (A\=0). SP, BP, and
charge-ordered antiferromagnetic phases also become stable for \
=2.

lator. Although the A*"~2 for a single BP, it can be much
lower for finite density, suggesting that it is easier to trap
many bipolarons as compared to a single BP.2° The charge-
ordered state at half filling can be simply viewed as a check-
erboard arrangement of bipolarons, although the concept of
an isolated BP does not really hold for such large densities.
The charge-ordered state exists even below the critical cou-
pling required for BP formation due to the nesting feature
present in the Fermi surface at half filling. The half-filled CO
state undergoes a transition to an antiferromagnetic state near
U=4. The region of antiferromagnetism grows with increas-
ing U in contrast to the pure Hubbard model. The PM state
still exists for small A but the FM state is absent. A large
region of phase space is taken by the single polaronic state
for large U. No magnetism is found at low densities, since
these single polarons are magnetically noninteracting due to
the large interpolaronic separations. At large densities, how-
ever, there are antiferromagnetic correlations between these
single polarons. This is consistent with the effective mag-
netic interactions found between two single polarons [see
Fig. 1(b)]. These effective antiferromagnetic interactions are
the origin of the growth in the AFM regime near n=1.

C. Half and quarter filling

The Hubbard-Holstein model at and near half filling has
been studied previously.?*>® The existence of spin- and
charge-density waves was reported. The possibility for an
intermediate metallic phase was also reported in a one-
dimensional model with dynamical effects for lattice.'® Fig-
ure 4(a) shows a U-\ phase diagram at half filling. The sys-
tem is either charge ordered or antiferromagnetic and,
therefore, the DOS is always gapped. The boundary separat-
ing the CO and the AFM states fits very well a U=\? power
law, which happens to be the boundary separating the SP and
BP regimes in the low-density limit [see Fig. 1(a)]. This
suggests that the CO phase can be viewed as a checkerboard
pattern of bipolarons, at least for large values of . The ori-
gin of the CO or the AFM phase at small values of U and A\
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FIG. 4. \-U phase diagrams at (a) half filling and (b) quarter
filling.

is related to the existence of nesting in the Fermi surface
with a nesting wave vector q=(1r, ).

The most interesting result of this paper is the observation
of a CO-AFM state at quarter filling. We plot the U-\ phase
diagram for quarter-filled system in Fig. 4(b). Unlike the
half-filled case, the small U and small A regimes correspond
to free-electron behavior. The SP state is found to exist for
large U and there is a large window where a charge-ordered
AFM state exists. We find that a self-consistent solution cor-
responding to a CO-FM state can exist only for U> 10, but it
is still higher in energy than the CO-AFM. For U< 10, the
CO-FM state is not stable and therefore the charge ordering
occurs only when it is accompanied by an AFM ordering.
This leads to a very interesting implication for the effects of
external magnetic field. Destabilizing the AFM phase by ap-
plying an external magnetic field to the CO-AFM state
would lead to a melting of the charge order and, hence, a
collapse of the gap in the density of states. The limiting cases
of half and quarter filling have been studied before in one
dimension using quantum Monte Carlo method.!” The phase
diagram at half filling contains an intermediate metallic

0.05

-0.05

—-0.1

FIG. 5. (Color online) Real-space patterns for charge density
(upper row) and spin density (lower row) at U=6 and N\=1 (left
column) and N =2 (right column). Note that the spin state for A=2 is
a G-type antiferromagnet if one rotates the lattice by 45° and con-
sider the square lattice of occupied sites.
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phase, in addition to the two phases discussed above. How-
ever, the region in parameter space of this intermediate me-
tallic phase shrinks as one approaches the adiabatic limit,
leading to a phase diagram very similar to ours [see Fig.
4(a)]. Therefore, the dimensionality does not appear to be
very crucial for understanding the half-filled case. The
quarter-filled case in Ref. 17 is found to have essentially the
same phases as in the half-filled case. The coexisting CO-
AFM state that we report in the present study was not ob-
served, suggesting that the higher dimension may be crucial
for the stability of this state.

To further investigate this unusual state at quarter filling,
we show the real-space data for charge density n; and spin
density s; in Fig. 5. A weak charge ordering is already
present at A=1 (see upper-left panel). This charge ordering is
accompanied by a stripelike spin ordering, where spins are
arranged ferromagnetically along one direction and antifer-
romagnetically along the other (lower-left panel). A very
clear CO pattern emerges for the larger value of \ (upper-
right panel), which occurs together with an AFM arrange-
ment of the spins (lower-right panel). In a strong-coupling
scenario, it is easy to understand the CO-AFM state within
the picture of effective magnetic interaction between single
polarons presented in Fig. 1(b). Assuming that the “occu-
pied” sites in the charge-ordered state can be viewed as
single polarons, an effective antiferromagnetic interaction
between them is strongest at distance 2, hence leading to a
magnetic structure which is a G-type AFM order for the
square lattice constructed out of the occupied sites only. For
smaller values of N the charge disproportionation in the CO
state is much smaller and the effective magnetic interaction
picture cannot be pushed to this weak-coupling regime.
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IV. CONCLUSIONS

We have presented ground-state properties of the
Hubbard-Holstein model in two dimensions in the adiabatic
limit for the lattice distortions. We use a self-consistent
method for generating the static lattice configurations in
combination with a Hartree-Fock decoupling of the Hubbard
term. Interestingly, the charge-ordered antiferromagnetic
state that we find at quarter filling was shown to be the
ground state for the LAO/STO interface in recent DFT
calculations.'® Within our analysis the charge ordering in this
state occurs only in combination with the AFM ordering, as
we find that the CO-FM state is unstable. Therefore, the
charge ordering could be melted by applying an external
magnetic field leading to a large negative magnetoresistance.
We argue that this model is relevant for the LAO/STO inter-
face since (i) it provides a possibility for the formation of
magnetic moments, (ii) leads to a CO-AFM ground state in
agreement with the recent LDA + U studies, and (iii) contains
the possibility for large negative magnetoresistance via a
magnetic-field-induced melting of the charge-ordered state.
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